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ABSTRACT 

The main purpose of this paper is to prove the existence of Poincar6 
sequences of integers which are not van der Corput sets. This problem was 
considered in I. Ruzsa's expository article [Rd (1982-83) on correlative and 
intersective sets. Thus the existence is shown of a positive non-continuous 
measure # on the circle which Fourier transform vanishes on a set of 
recurrence, i.e. S = {n ~ Z ; / J ( n )  = 0} is a set of recurrence but not a van der 
Corput set. The method is constructive and involves some combinatorial 
considerations. In fact, we prove that the generic density condilion for both 
properties are the same. 

1. Definitions and preliminairies 

Given a subset S of the integers N, let 

D*(S) = lim 
N-~ N 

IS ~ [ 1 , N ] I  

be the upper density of S. 
In what follows, we will recall some definitions from [F] and [R1] (cf. also 

[B-MI). 
A subset A of the positive integers is called a Poincar~ or recurrent set (P) 

provided whenever (X, ~, /1 ,  T) is a dynamical system and.4 a measurable set 
of  positive measure, then 
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#(T-mA f ) A ) > 0  f o r s o m e m ~ A  

(compare with the classical Poincar6 recurrence theorem). It follows from [F] 

and [B-M] that property (P) is equivalent to intersectivity (cf. [RI]), meaning 

that 

A fh (S - S) 4= 

whenever D*(S) > O. 
The set A is called a van der Corput set (v.d.C) provided for sequences of real 

numbers (u.).___0, the uniform distribution mod 1 of each different sequence 

v. = u. + h - u. for h ~ A implies the uniform distribution of the sequence (u.) 

itself. (Compare with the van der Corput criterion for uniform distribution.) 

There are several equivalent formulations of this property, due to Kamae-  

Mend~s France [K-M] and Rusza [R1] and which we list now: 

(1.1) If # ~ M+ (T) is a positive measure on the circle and 

= f e-i"°#(dO) = 0 for n CA 

then # is continuous. 

(1.2) A is correlative, meaning that whenever (y.) is a sequence of complex 
numbers satisfying 

Y, lY. 12 = O(x), 
n ~ x  

Y~ y.+kY.=O(X) (kEA)  (correlation condition) 
n < x  

then 

(1.3) Given e > 0, 

a.  E R satisfying 

E y .  = o (x ) .  
n < x  

there is a polynomial P(x )=  Encnuto/ancosnx with 

P(x) > O, P(0) = l, a0 < e. 

It was observed in [K-M] that van der Corput sets are Poincar6 sets. Our 

purpose is to show that the converse implication is false. Thus 

THEOREM. There is an intersective set which is not correlative (cf. [R1]). 
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In the next section, it is shown that no counterexample can be obtained by 

statistical considerations, since the generic density conditions for both proper- 

ties are the same. This fact was perhaps already observed earlier by others, but 

we include a proof here since it shows the necessity of a more deterministic 

approach. 
Let us recall two more properties. The first is related to the Bohr topology (cf. 

[R1]). For a finite set V = (vl . . . .  , vk) of real numbers, write for e > 0 

S(v ,e )= (n; II vjn II < e  for j  = 1 . . . .  ,k} 

where 11 x II stands for the distance of x to the nearest integer. Call A c N 

approximative provided 

A • S(v, e) ÷ 

for any finite v and e > 0. 

As observed in [R l l, this means that vl . . . . .  vk can be simultaneously 

approximated by rationals having a common denominator from A. 

Finally, call A c N an FC+-set (forcing continuity for positive measures) 

provided 

/ t~M+(T) ,  fi(n)~O on A=*/I is continuous. 

The following implications hold: 

(1.4) (FC +) =* (v.d.C) ~ (P) =* (approximative). 

Notice that the class of sets which do not satisfy one of the properties listed in 
(1.4) is closed under finite union. 

There are also quantitative versions of the notions discussed above (see 

[R 1]) of  interest in the study of concrete examples. 

A first step in proving the theorem, in fact containing the main idea, will be 

to construct a Poincar6 set which is not (FC ÷) (see Section 3). The actual 

vanishing property for the Fourier transform is then achieved by modifying 

the previous construction, modifications mainly of a technical nature (Sections 

4, 5,6). 

We also refer the reader to Y. Peres' thesis for more details on properties (P) 
and (v.d.C). 
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2. Discussion of the generic case 

The result obtained in this section is a variant of statistical verifications of 
certain harmonic analysis properties for random subsets of Z with prescribed 
density (compare with [K1 ], [K2], for instance). 

PROPOSmON 2.1. Let N = UIk be a partition of  the integers in intervals, 

say Ik = [22k, 22k*']. Choose for each k a random subset Ak Of lk, IAkl = Nk, 

assigning to each element o f  lk the same probability ~k. Let A = I.Jk~ ~ A~. Then 

almost surely 

(l) l f l imk 2 -kN k < ~ ,  then A is not approximative. 

(2) lflimk 2 -kNk = ~ ,  then A is an FC÷-set. 

In order to prove (2), we use the following lemma (compare with [K-M] and 
(1.3)). We denote A(T) the space of absolutely convergent Fourier series. 

LEMMA 2.2. Let A C Z, for which there exists a sequence (~n)n = 1.2,... in A (T) 
satisfying the conditions 

(i) ~ is supported by A, 

(ii) sup [[ ~o. [[A(T) < ,.30, 
(iii) ~0.(0)= 1, 
(iv) to.(x)~O f o r x ~ T ,  x ~ O. 

Then A is an FC+-set. 

PROOF. Let/t EM+(T). Since (~0.) is uniformly bounded, (iv) implies 

(2.3) lim f ~o.(x)p(dx) = p({0}). 
n ~ o 0  J T  

Since lim,_~ ~n(k) = 0 for each k, it follows from (ii) that 

(2.4) lim, Y, O,(k)li(k) < c limkEA [~tL(k)[. 

It follows that p({0}) = 0 if/i ~ 0 on A. 

PROOF OF PROPOSrrIoN 2.1(2). Assume limk 2-'~Nk = oO. Fix k and con- 
sider independent (0,1)-valued selectors (~),ez, of mean di, ~. Ilk l =Ark. 
Define the random function 

1 
= -  E  .(oJ)e 

Nk n~Ik 
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Thus 

(2.5) f ll ~oo IIA de) = 1 = f ~G(0)de). 

Also 

(2.6) < 3 e,OX + 1  E ( ~ . - 6 ) e  "x • 

The first term is bounded by Ilk L- ~11 -- e ix I- t, which is small for x not too 

close to 0. For the second term in (2.6) we apply standard probabilistic 

estimates to get (since the ~, - 3 are independent of mean 0) 

f ~ - 6)e i~ de) 
lit or2 

~ c(logllk l) 1/2 ~(a))  2 de) <--_ c(2kNDI/L 

This will be O(Nk) provided 2-kNk ~ 0 0 .  Thus it results from (2.6) that given 

z > 0, for an appropriate k 

(2.7) f sup I~,(x)[de) < r. 
Ix l>~ 

Using (2.5), (2.7) it is now easy to satisfy the hypothesis of  Lemma 2.2. 

Assertion (1) of  Proposition 2.1 is related to an observation of Katznelson 
and Malliavin that the random sets obtained under hypothesis (1) are almost 

surely Helson. 

PROOF OF PROPOSITION 2.1(1). By considerations of finite union, it suf- 

fices to show that for some z > 0, if 

(2.8) lim 2-kNk < r 

then almost surely 

(2.9) sup lim I 1 - ei'~' I > 0. 
x•T n~A 

Let ~o be a positive function on T satisfying the conditions 
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ep(x) = 0 if I 1 - e'X[ < ¼, 

0 ( 0 )  = l ,  

II ~o IIA < 20, 

The sets A, are obtained by choosing at random Nk elements in the interval I,. 
Notice that in the limit this choice is almost surely not repetitive. Notice also 
that  (2.9) will hold if for some k and all ! > k, the function 

(2.10) II ~o(nx) 4: O. 
n E A k u  • . .  uAt 

Indeed, (2.10) will give a point xt so that 

I I - e  ~"x,[ >___~ f o r n E A k U . . .  UAt. 

By compactness, there is then a point x E n fulfilling 

I I - e i " X l > l  i f n ~  (.J Al. 
l > k  

Thus, by the Borel-Cantelli lemma, it remains to show that for k large enough 
and any l > k, with probability at least ½ 

In fact, we show that 

with probability at least ½. 
The argument is based on the following observation. If f is a function in 

A (T), then 

1 f(O) f(x)~o(nx)dx < 20 
(2.13) ]Ijln~t, - f  = I-~j I II fllA 

by hypothesis on ~ and since 

f(O) - f f(x)~(nx)dx = ~, O(k)f( - nk). 
d k E Z  

k ~,O 
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The claim (2.12) then easily follows by iteration of (2.13), writing a telescopic 

sum. We are led to the condition 

I ~-1 20 1 
11 

j = k  S=0 161 20 

or  

i 1 
202~2J 2 -2J < 

j-k 400'  

clearly satisfied for appropriate 3. 
This proves Proposition 2.1. Thus for random subsets of  the integers, the 

generic density condition for properties (FC+), (v.d.C), (P) and density in the 

Bohr compactification are the same. 

3. Construction of a recurrent set which is not (FC +) 

For t E T, let ~t be the Dirac measure. 

PROPOSITION 3.1. Define the infinite convolution 

V ~ 
j - I  

and  let lz = ~o + v. Let  a : N --- R+ satisfy limn-oo a(n)  = oo. Then the set 

A =  [..J { l < n < N ! : l f i ( n ) l < a ( N ) / N }  
N 

is recurrent. 

Obviously A is not (FC +) provided l imn_~(a(n) /n)  = O. 

Proposition 3.1 is clearly a consequence of 

LEMMA 3.2. 

(3.3) 

Denote 

tation 

Let A be a subset o f {  1, 2 , . . . ,  J !} ,  IA I > c J!. Then 

min I/~(n)l < M ( c ) / J .  
nEA - A  

[2j = {0, 1 . . . .  , j} and f2 = f2~ × ~2 × • • • X f~j_~. The represen- 
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J - I  
(3.4) n = ~ qjj! (0 < qj <=j) 

j= l  

defines a one-to-one map from ( 1, 2 , . . . ,  J! - 1 } to f2. Denote by v the 

normalized counting measure on f l  ( = product measure). Let A be a subset of  

{ 1 , . . . , J ! - 1 } ,  I A l > c J !  and .4 c f l  the image of  A under  the mapping 

considered above. Thus v(.4) > c. The following combinatorial  lemma will be 

used. 

LEMMA 3.5. Le t  B C f~, v (B)  > c. Then there is a pair  o f  points  x ,  x '  in B 

a n d  an  integer cJ < s < J such that 

xt  = x~ . . . .  ,x~_~ = x~-z,  

xs = 0, x~ = Is/2], 

{Xs+ I --Xt+ll-_<2 . . . . .  I x j - i - x J - x l  < 2 .  

PROOF. Perform the following construction: 

B 1 = B ,  

Bj_~ = { t ~ f ~ l t h e r e i s t ' E B j w i t h  t~---- t~ . . . .  , t j - 2 =  t j -2 ,  I t j - ~ -  t'j-~l < 1}, 

Bj-2 -- {t ~ I there is t ' ~ B j _ l  with t~ = t~ . . . .  , t j -3  = tJ-3, 

l t j-2 - tJ-2l < 1, tj_~ = t.~_~), 

B~ = {t E ~  I there is t '~B~+~ with t~ = t~ . . . . .  ts-~ = g_~, 

I t s -  t~l _-< 1, ts+~ = g + ~ , . " } ,  

Thus each element of  B, can be perturbed in the s-th coordinate by at most one 

unit  to become an element of  B~ + 1. Perturbing the J - s last coordinates, an 

element of  B is obtained. 

Denote by 7tg the projection on the coordinates 1 . . . . .  s - 1, s + 1 , . . . ,  

J - 1. I f  for each xEn~(Bs+~)  there is t ~ f)-\Bs+~ with lr~(t) = x,  then clearly 

1 1 
v(Bs \ Bs + ~) > - v~(B~ + i)) > - v(B~ + 1), 

S S 
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(3.6) v(Bs) > (1 +~)v(Bs+t) .  

Fixing l < J < J ,  (3.6) and the fact that 1-I:=:(l + 1 / s ) = J / J ,  imply the 

existence of some s > v(B).  J and a point  x ~ n~(B~ + ~) satisfying 

t ~ f ~ ,  r c ~ ( t ) = x ~ t ~ B , + l .  

Thus, by construction, one may find for each p ~ (0, 1 , . . . ,  s} an element 

( X l , . . . ,  Xs-~, p, x'+~ . . . .  , x ' j-O 

in B, where I x~ + t - x~ + ~ I --< 1 . . . . .  I x~_ 1 - x j_  11 ---< 1. The lemma follows. 

PROOF OF LEMMA 3.2. Applying Lemma 3.5 to the set, 'l, a pair of  elements 

J - I  J - I  

n =  E xfi!, n ' =  E xj'j! 
j ~ l  j ~ l  

in A is obtained, where (x:), (x:) fulfill the condit ion of  Lemma 3.5. Thus 

m = - n ' -  n = [s/2]s! + (x'+~ - xs+O(s + 1)! + . . .  + (x'j-t - x . t - l ) ( J  - -  1)! 

is in the difference set A - A. By definition o f g  

Hence  

(3.7) 

where 

COS 2 r e m =  / ~ ( m ) =  1 + H 
j= l  j !  

+ ~ c o s 2 n  m .  
j = s + l  j! 

= + Y~ 1 - c o s 2 n  I/~(m)l < l + c o s 2 n - -  
(s 

m m 
= 2 c o s  2 n -  4-2 Y, sin 2 n -  

(s + 1)! j>s+l j!  

and since I x, + l - x; + l [ < 2 . . . . .  I x j_ 1 - -  X J -  1 I ~ 2, for j > s + 2, 

m s 1 I OS s l,,l  cos I ]s 
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sin n ~ 

sin ~[s_]s!+ (s + 1)! 
= rC[L2jj! (X~+l--X,+l) 7! 

= 
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- - + . . . + ( x j _ l - x j _ ~ ) ~ t  

159 

Thus since 

Define 

qj( t ) = pl( t ) p2( Nl t ) p3( N1N2t ) " " Pj( NI " " . Nj_ t t ) 

supp 4j C [ - ~ N l ' ' '  Nj, I N l . . .  Nil. 

for which 

PROOF. 

Substitution in (3.7) thus yield 

1 , 
I~(m)l < const ,--- < - -  

s s cJ  

using the lower estimate on s given by Lemma 3.5. This completes the proof of 
Lemma 3.2. 

The purpose of the next sections is to modify previous construction in order 
to obtain a (P)-set on which/~ actually vanishes. 

4. Reduction to a local problem 

Assume for each j positive integers n~ < ~0N~ given and a trigonometric 
polynomial pj satisfying the following conditions: 

(4.1) py > O, 15j(O) = 1,  

(4.2) supp/ij C [¼Nj, ¼~], 

l 
(4.3) IfA c [0, nj], IA I > -  nj then f i j (m) = - ½ for some m EA - A. 

J 

LEMMA 4.4. Under the condi t ions (4.1), (4.2), (4.3), there is a posit ive 

rneasure l t , / t ( {0 } )  = l, such that  fi vanishes on some  set o f  recurrence. 
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qj(t) = qj_,(t)pj(N,. . .Nj_,t) 

we have 

(4.5) 

Also for I n I < ½Nl... N;_ 1, 

(4.6) 

I f n  = N j . . . ~ _ ~ m ,  then 

(4.7) 

f qj(t)dt = ( f  q J - O ( f  PJ)= 1. 

~(n)  = qj_,(n). 

~j(n) =/~j(m). 

Let v be the weak*-limit of the sequence {qj} in M(T). By (4.5), (4.6), (4.7) 

II v II = l ,  

~(n)=/~j(m) i f n=Nj . . .N j_~m i f m < ½ N j .  

(4.8) 

(4.9) 

Define 

(4.10) 

Take S c Z, 

/~ = 50 + 2v. 

D*(S)>e > 1/j. Since the class { A - A  [A c S, A finite} is 
homogeneous in the sense of [R2] there is a subset A I of [0, N~. • • Nj_ 1n j] for 
which 

(4.11) A I - A 1  c S - S ,  

(4.12) IAtl > eNl" • .Nj_~n~. 

Hence there is A C { 1 . . . .  , nj } satisfying 

(4.13) 
(A - A ) N , . . . N j _  1 CA 1 - A I ,  

IAI > enj. 

By (4.3)/~j(m) = - ½  for some mEA - A .  Thus if n = N l ' '  " ~ - l m ,  then 
n E S  - S by (4.13), (4.11) and since I m I < ½Nj, by (4.9) 

fi(n) = 1 - 2~(n) = 1 + 2/~j(m) = 0. 

This proves the lemma. 
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Fixing an integer n and e > 0, our purpose will be to construct a positive 

measure/~, I1 u I1 = satisfying 

whenever 

( , )  

/~(m) = - ~ f o r s o m e m ~ A - A  

A C [0, n], IA I > e n .  

Given p, let for some N 

p, =(/~ • F~.) + (/~ - ( / ~  *FN)] . D .  

where Fu = N-F6jer kernel and D. = n-Dirichlet kernel. For N large enough, 

we may ensure that 

II [u - ( U  *FN)I . D .  < 

Thus p = p~ + ¼ is a positive polynomial and 

l ~ ( m ) = ~ l ( m ) = f i ( m )  for Iml < n ,  m ~ 0 .  

It is now clear how to get from (.) a sequence {pj} satisfying the conditions of 

Lemma 4.4. 

5. Construction of certain measures 

Fix an integer N and consider the basic measure 

(5.1) 

with transform 

n 
#(n) = cos 2n -- .  

N 

In this section we construct a perturbation at of tr satisfying the following 

conditions. 

LEMMA 5.1. Given R and a number L,  there is a positive measure trt such 

that th is supported by the N-th roots o f  unity and 

(5.2) 6~(n) = 1 i fL  < In I < RL ,  

(5.3) 6 t ( n ) = - I  i f l N / 2 - n l < R L ,  
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(5.4) 

PROOF. 

II a - a~ IIM<T)~ c ( R ) ( L / N )  2. 

We assume R L  ~ N,  N even. Consider the polynomial  

ql(/) = ~ [ l - c o s ~ ( R L - , n [ ) ] e  ~"'. 
In l <=RL 

Since the function 

2n 
1 - c o s - - ( R L - n )  i f0  < n < R L  

N 

0 i fn  > R L  

is nonnegative, decreasing and convex, ql is positive. Hence 

(5.5) l] q, II, = 1 - c o s -  R L  < 10 . 
N 

Define 

L - I n l  
q2 = ql *FL; FL(t) = Y. - -  e int = F6jer kernel. 

I n l ~ L  L 

Then 

(5.6) supp q2 C [ - L,  L ], 

(5.7)  q2 >= 0, Ii q2 II, =< l 0  , 
\ N /  

(5.8) ql < 10Rq2, 

the last property following from the fact that supp ql c [ - R L ,  R L  ]. 

Next  define the polynomial  

q3(t) = 40Rq2(t) ÷ [2 cos R L t  - cos(½N - R L  ) t - cos(½N + R L  )t]q~(t). 

By (5.8), (5.7) 

(5.9) q3 >--0, II q31], < 5 0 0 R ( R L / N )  2. 

I f  L < n < R L ,  then 
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2/t 
(5.10) ,~3(n) = 4~(n --  R L )  = 1 - cos - -  n. 

N 

If  1½N - n I < R L ,  then 

(5.11) 
2~3(n) = - 4t(n - ½N + R L  ) - 4,(n - ½N - R L  ) 

2/t 
= - ~1(RL - In - ½N I ) =  - I - c o s - - n .  

N 

Finally consider the positive measure 

1 N-I  

al = a + iv  ~ q3 " k~O= J2.~/N 

for which, by (5.9), 

II a, - a IIM,T)----< N q3 27r = II q3 II, < 500R3 

while 

1 N-I 2Zt 
#~(n) = 6 (n )  + N-- kY.O2 (q3 e-int) ]t= 2 • k / N  = COS --U n + ~ { •3(m)[ m - n ~ UZ} 

and (5.2), resp. (5.3), follow from (5.10), resp. (5.11), as is easily verified. 

6. Proof of existence of a (P)-set which is not (v.d.C) 

Our  aim is to satisfy (.) in Section 4. We will use arguments similar to those 

of  Section 3 and the measures constructed in the previous section. Take n of  
the form QP, Q even. Fix an integer R.  Use the representation 

P-I  
(6.1) m =  Y~ qjas ( 0 < q j < Q )  

j=o 

to get a one-to-one map from [0, n - 1 ] into f~----- {0, 1 , . . . ,  Q - 1 } e. Denote  v 

the normalized counting measure on ft. Identifying {0, 1 . . . .  , Q - 1 } with the 

cyclic group Z / Q Z ,  denote 0 the coordinate-wise shift acting on fL By Lemma 

5.1, we get for each j a positive measure ~ on T satisfying the condit ions 

(6.2) # s ( m ) = l  i f Q  s < l m l  < R Q  j, 
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(6.3) #j(m) = - 1 

(L = QJ, N = 0,+]). Moreover 

if 1 0 ' + 1 / 2  - m l <RQ j 

1 
(6.4) II c~j IIMm ~ 1 + C(R) ~---; 

and aj is supported by the Q0 + I roots of  unity, implying Q~ + ]- periodicity of  ~ .  

Define 

Hence by (6.4) 

v = % * a l * ' ' "  * O'e-  t. 

P 
(6.5) II v HM<r)---< 1 + C(R) Q2" 

Let A be a subset of  [0, n - I], I A I > en. Let J c f~ be its image under the 

correspondence mentioned earlier. Thus v(A) > e. Consider next the sets A, 

0 ( J ) , . . . ,  0R(A). It is easily seen that for some 4 < r < R - 3 say, the set 

B = J n O-'(J) 

will satisfy v(B) > e2/lO, provided we choose R > lO/e. (This is the recurrence 

principle.) 

Assuming now 

(6.6) (1 + l/Q)e> 10e -2 

the same combinatorial argument as described in Lemma 5 gives a pair of  

points x, x '  in B: 

x = ( x , , . . .  ,x~-i, 0, xs+l . . . . .  xp), x '=(x l  . . . . .  xs-1, ½Q, x~+l,... ,x~), 

where 

Ixj-x~l <2 i f s < j < P .  

Thus x, O'(x') are both in J corresponding to a pair of  points a, a '  in A: 

P - 1  P - 1  

a =  Y~ qjaJ, a ' =  Y~ q;aJ 
j - o  j - o  

where 
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(6.7) q; - qs ~ {½Q + 4 . . . . .  ½Q + R - 2}, 

(6.8) q ; - q j ~ { 2 , . . . , R  - 1 )  + QZ ifj  v~ s. 

Let m = a '  - a. Thus m EA - A and we claim that #(m) = - 1. Since ¢(m) = 
rl 6j(m), in view of (6.2), (6.3) it suffices to show that 

mE[½Q s + ~ - R Q ' ,  ½Q'+' + RQ ~] + Qs+tZ (6.9) 

and 

(6.10) m ~([  - RQ j, RQJ]\I  - Q~, QJ[) + Qi+'z i f j  4= s. 

Clearly, for a fixed j 

m E ( q ; -  qj)QJ + [ -  QJ, QJ] + Qi+tZ. 

Therefore (6.9), resp. (6.10), follows from (6.7), resp. (6.8). To satisfy (6.6) take 

P = c(e)Q. Then (6.5) implies, together with the condition on R, 

for Q large enough. 

completes the proof. 

1 

Take /1---½v + (~4- ½#(0)) which will fulfill (.). This 

7. Remarks 

(1) It is easily seen that the method described above yields, for all e > 0, a 

positive measure/t of  the form/t = 50 + vsuch that II v II < 1 + eand  {n EN; 
/~(n) = 0} is a set of recurrence. 

(2) The construction uses an argument to prove recurrence, different from 
the standard harmonic analysis argument. It is possible and perhaps of interest 

to give a more explicit description of the Poincar6 sequence obtained. 
(3) Following Ruzsa, call a family 

provided 
(i) A E ~ , B  c A = , B ~ ,  
(ii) A E ~ ,  nEZ=,A  + n ~ i .  

Then the limit 

d ( ~ )  = lim 
N~oo 

of  finite subset of  Z homogeneous 

IAI 
sup 
AE~ N 

A c [O,N] 
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exists and there is an infinite subset A c Z of  density 

d(A) = d ( ~ )  

which finite subsets belong to c~. This result is due to Ruzsa. An example of  
such a set is obtained by taking 

c£ = {A C Z, A finite [ A - A C supp/~ }. 

Ifd(Cg) > 0, then/~ does not vanish on the difference set of  a set of  integers with 
positive denisty. Hence, in order that the complement of  supp/~ should be (P), 
d ( ~ )  has to be zero. Thus the problem considered in this paper is of  a finite 

nature. 
(4) A subset A of  Z is called a Sidon set provided the ~ (G)  and A (T) norms 

are equivalent on trigonometric polynomials with Fourier transform sup- 
ported by A. If A is a Sidon set, then A is not (v.d.C), since 

f i ( n ) = -  l, n E A \ { O }  

for some positive measure/~ (see [L-R]). The problem whether A may be 
approximative is open. 
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